Некоторые задания с работы:
Длины двух рек относятся как 2:5, при этом одна из них длиннее другой на 60 км. Найдите длину большей реки. Ответ дайте в километрах.
Ответ: ___________________________.
Найдите четырёхзначное число, которое в 9 раз меньше четвёртой степени некоторого натурального числа. В ответе укажите какое-нибудь одно такое число.
Ответ: ___________________________.
Найдите четырёхзначное число, которое в 3 раза меньше куба некоторого натурального числа. В ответе укажите какое-нибудь одно такое число.
Ответ: ___________________________.
Из книги выпало несколько идущих подряд листов. Номер последней страницы перед выпавшими листами — 298, номер первой страницы после выпавших листов записывается теми же цифрами, но в другом порядке.
Сколько листов выпало?
Ответ: ___________________________.
По вкладу «А» банк в конце каждого года планирует увеличивать на 10 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать эту сумму на 7 % в первый год и на одинаковое целое число n процентов и за второй, и за третий годы. Найдите наименьшее значение n , при котором за три года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
По вкладу «А» банк в конце каждого года планирует увеличивать на 20 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать эту сумму на 11 % в первый год и на одинаковое целое число n процентов и за второй, и за третий годы. Найдите наименьшее значение n , при котором за три года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.
На доске в одну строку слева направо написаны n натуральных чисел, причём каждое следующее из них является квадратом предыдущего.
а) Могли ли при n = 3 на доске быть написаны ровно 14 цифр (например, если на доске написаны числа 5, 25 и 625, то написаны ровно 6 цифр)?
б) Могли ли при n = 3 на доске быть написаны ровно 8 цифр?
в) Какое самое маленькое число может быть написано на доске при n = 4 , если на доске написано ровно 20 цифр?
На доске в одну строку слева направо написаны n натуральных чисел, причём каждое следующее из них является квадратом предыдущего.
а) Могли ли при n = 3 на доске быть написаны ровно 11 цифр (например, если на доске написаны числа 5, 25 и 625, то написаны ровно 6 цифр)?
б) Могли ли при n = 3 на доске быть написаны ровно 12 цифр?
в) Какое самое маленькое число может быть написано на доске при n = 4 , если на доске написано ровно 22 цифры?