ЕГЭ 2024. Математика (профиль). Новый тренировочный вариант №3 — №230925 (задания и ответы)
ЕГЭ 2024. Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.
Пробный вариант составлен на основе официальной демоверсии от ФИПИ за 2024 год.
В конце варианта приведены правильные ответы ко всем заданиям. Вы можете свериться с ними и найти у себя ошибки.
Скачать тренировочный вариант ЕГЭ: Скачать
Или создайте свой оригинальный вариант: Перейти
Интересные задания:
4. В классе 16 учащихся, среди них два друга – Вадим и Сергей. Учащихся случайным образом разбивают на 4 равные группы. Найдите вероятность того, что Вадим и Сергей окажутся в одной группе.
5. Стрелок стреляет по одному разу в каждую из четырёх мишеней. Вероятность попадания в мишень при каждом отдельном выстреле равна 0,9. Найдите вероятность того, что стрелок попадёт в первую мишень и не попадёт в три последние.
9. Для сматывания кабеля на заводе используют лебёдку, которая равноускоренно наматывает кабель на катушку. Угол, на который поворачивается катушка, изменяется со временем по закону 𝜑 = 𝜔𝑡 + 𝛽𝑡 2 2 , где 𝑡 — время в минутах, прошедшее после начала работы лебёдки, 𝜔 = 50 град./мин — начальная угловая скорость вращения катушки, а 𝛽 = 4 град./ мин2 — угловое ускорение, с которым наматывается кабель. Определите время, прошедшее после начала работы лебёдки, если известно, что за это время угол намотки 𝜑 достиг 2500°. Ответ дайте в минутах.
10. Один мастер может выполнить заказ за 30 часов, а другой – за 15 часов. За сколько часов выполнят заказ оба мастера, работая вместе?
14. В прямоугольном параллелепипеде 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 на диагонали 𝐵𝐷1 отмечена точка 𝑁 так, что 𝐵𝑁: 𝑁𝐷1 = 1: 2. Точка 𝑂 − середина отрезка 𝐶𝐵1 .
а) Докажите, что прямая 𝑁𝑂 проходит через точку 𝐴.
б) Найдите объём параллелепипеда 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 , если длина отрезка 𝑁𝑂 равна расстоянию между прямыми 𝐵𝐷1 и 𝐶𝐵1 и равна √2
17. Боковые стороны 𝐴𝐵 и 𝐴𝐶 равнобедренного треугольника 𝐴𝐵𝐶 вдвое больше основания 𝐵𝐶. На боковых сторонах 𝐴𝐵 и 𝐴𝐶 отложены отрезки 𝐴𝑃 и 𝐶𝑄 соответственно, равные четверти этих сторон.
а) Докажите, что средняя линия треугольника, параллельная его основанию, делится прямой 𝑃𝑄 в отношении 1:3.
б) Найдите длину отрезка прямой 𝑃𝑄, заключенного внутри вписанной окружности треугольника 𝐴𝐵𝐶, если 𝐵𝐶 = 4√19.
Вам будет интересно:
Математика(профиль). ЕГЭ 11 класс 2024. Тренировочный вариант (задания и ответы)