СПЕЦИФИКАЦИЯ

диагностической работы по физике для обучающихся 10-х классов образовательных организаций города Москвы

1. Назначение диагностической работы

Диагностическая работа проводится с целью определения уровня освоения обучающимися 10 классов курса физики и выявления элементов содержания, вызывающих наибольшие затруднения.

Период проведения – май.

2. Документы, определяющие содержание характеристики диагностической работы

Содержание и основные характеристики диагностических материалов определяются на основе следующих документов:

- Федеральный государственный образовательный стандарт среднего общего образования (утверждён приказом Минобрнауки России от 17.05.2012 № 413);
- -Примерная основная образовательная программа среднего общего образования (одобрена решением Федерального учебно-методического объединения по общему образованию (протокол от 28.06.2016 № 2/16₃));
- Приказ Минпросвещения России от 20.05.2020 № 254 «Об утверждении федерального перечня учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность».
- УНИВЕРСАЛЬНЫЙ КОДИФИКАТОР распределённых по классам проверяемых требований к результатам освоения основной образовательной программы среднего общего образования и элементов содержания по физике для использования в федеральных и региональных процедурах оценки качества образования одобрен решением федерального учебнометодического объединения по общему образованию (протокол от 12.04.2021 г. №1/21) подготовлен федеральным государственным бюджетным научным учреждением «ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ».
- Приказ Минобразования России от 17.04.2000 № 1122 «О сертификации качества педагогических тестовых материалов».

3. Условия проведения диагностической работы

При организации и проведении работы необходимо строгое соблюдение технологии независимой диагностики.

Настоящий текст является объектом авторского права. Свободное и безвозмездное использование любых материалов, входящих в состав данного текста, наголяции тель и является ответь по выпрасого оправство оператого и повым выполнять и воснова и воспаснова и выполнять и выполнять и по правительного и некомента и выполнять и выполнять и выполнять и правительного и негольшения выполнять и выполнять и выполнять и правительного и по правительного и поста по правительного и правительного © Московский центр качества образования, 2022.

Диагностическая работа проводится в бланковой/компьютерной форме. При компьютерной форме задания с развёрнутым ответом

выполняются на отдельном бланке.

Обучающиеся

воспользоваться непрограммируемым калькулятором (на каждого ученика) с возможностью вычисления

тригонометрических функций (cos, sin, tg) и линейкой.

ΜΟΓΥΤ

4. Время выполнения диагностической работы

На выполнение диагностической работы отводится 60 минут.

При компьютерной форме добавляется пятиминутный перерыв для разминки глаз.

5. Содержание и структура диагностической работы

Проверочная работа содержит 18 заданий: 17 заданий с кратким ответом, из которых 11 заданий с записью ответа в виде числа, 6 заданий на установление соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр, и 1 задание с развёрнутым ответом. В таблице 1 приведено распределение заданий в работе с учётом их типов.

Таблица Т Типы заданий, использующихся в работе

Типы заданий	Количество заданий	Максимальный первичный балл
С кратким ответом в виде числа	11	11
С кратким ответом в виде набора цифр	6	12
(на дополнение, на соответствие и		
множественный выбор)		
С развёрнутым ответом	1	3
Итого	18	26

Содержание диагностической работы охватывает учебный материал курса физики 10-го класса по темам «Механика» и «Молекулярная физика».

Распределение заданий диагностической работы по основным разделам содержания учебного предмета представлено в таблице 2.

Таблииа 2 Распределение заданий диагностической работы по основным разделам содержания учебного предмета

No	Разделы освоения учебного предмета	Число
п/п		заданий
1.	Механика (кинематика, динамика, законы сохранения	10
	в механике, гидростатика)	
2.	Молекулярная физика (МКТ, термодинамика)	8
	Итого	18

Настоящий текст является объектом авторского права. Свободное и безвозмездное использование любых материалов, входящих в состав данного текста, ограничено использованием в личных целях и допускается исключительно в некоммерческих целях. Нарушение вышеужазанных положений является нарушением ввторских прав и влечёт наступление гражданской, административной и уголовной ответственности в соответствии с законодательством Российской Федерации В случае самостоятельного использования материалов теста ГАОУ ДПО МЦКО не несёт ответственности за уграту актуальности текста. © Московский центр качества образования, 2022.

Приоритетом при составлении варианта работы является необходимость проверки предусмотренных стандартом видов деятельности: усвоение понятийного аппарата курса физики, овладение методологическими знаниями, применение знаний при объяснении физических явлений и решении задач. Распределение задний по блокам проверяемых умений представлены в таблице 3

Таблица 3 Распределение задний по блокам проверяемых умений

Проверяемые умения	Количество заданий
Анализировать механические процессы (явления), используя основные положения и законы механики; при этом использовать математическое выражение законов, указывать условия применимости физических законов	3
Анализировать тепловые процессы (явления), используя основные положения молекулярной физики и законы МКТ и термодинамики	2
Применять при описании физических процессов и явлений физические величины механики и молекулярной физики	6
Объяснять особенности протекания физических явлений	1
Решать расчётные задачи с явно заданной и неявной заданной физической моделью	6
Итого	18

В работе представлены задания разных уровней сложности: базового, повышенного и высокого. В таблице 4 представлено распределение заданий по уровню сложности.

Настоящий текст является объектом авторского права. Свободное и белвозмездное использование любых материалов, входищих в состав данного текста, ограничено использованием в личных целях и допускается исключительно в некоммерческих целях. Нарушение вышеужазывых положений является нарушением авторских прав и высей тветдильного, административной и укловной ответственности в сотитили с законодательством Российской Федерации. В случае самостоятельного использования материалов теста ГАОУ ДПО МЦКО не несёт ответственности за утрату актуальности текста. ⊗ Московский центр качества образования, 2022.

Таблица 4 Распределение заданий по уровню сложности

			Процент максимального
Уровень сложности заданий	Количество заданий	Максимальный	балла за задания данного
		первичный балл	уровня сложности от
			максимального балла за
			всю работу
Базовый	12	18	67
Повышенный	5	5	28
Высокий	1	3	5
Итого	18	26	100

6. Система оценивания выполнения отдельных заданий и диагностической работы в целом

Задание с кратким ответом считается выполненным, если записанный в бланке ответ совпадает с верным ответом.

Задания 1-6, 10-13, 15 оцениваются 1 баллом.

Задания 7–9, 14, 16, 17 оцениваются 2 баллами, если верно указаны оба элемента ответа; 1 баллом, если допущена ошибка в указании одного из элементов ответа, и 0 баллов в остальных случаях.

Задание 18 с развёрнутым ответом оценивается экспертом с учётом правильности и полноты ответа. Максимальный первичный балл за задание с развёрнутым ответом составляет 3 балла. К заданию 18 приводится подробная инструкция для экспертов, в которой указывается, за что выставляется каждый балл – от нуля до максимального балла.

В демонстрационном варианте представлены примерные типы и форматы заданий диагностических работ для независимой оценки уровня подготовки обучающихся, не исчерпывающие всего многообразия типов и форматов заданий в отдельных вариантах диагностической работы.

Максимальный балл за выполнение работы -26.

В демонстрационном варианте представлены примерные типы и форматы заданий диагностических работ для независимой оценки уровня подготовки обучающихся, не исчерпывающие всего многообразия типов и форматов заданий в отдельных вариантах диагностической работы.

В приложении 1 приведён обобщённый план диагностической работы. В приложении 2 приведён демонстрационный вариант диагностической работы.

Приложение 1

Обобщённый план диагностической работы по физике для обучающихся 10-х классов образовательных организаций города Москвы

Используются следующие условные обозначения: K – задание с кратким ответом; P – задание с развёрнутым ответом.

Коды проверяемых предметных результатов обучения и коды проверяемых элементов содержания соответствуют универсальному кодификатору распределённых по классам проверяемых требований к результатам освоения основной образовательной программы основного общего образования и элементов содержания по физике (углубленный уровень): (http://doc.fipi.ru/metodicheskaya-kopilka/univers-kodifikatory-oko/sredneye-

obshcheye-obrazovaniye/fizika 10-11 un kodifikator.pdf)

№ зад а- ни я	Контролируемые элементы содержания	КЭС	Проверяемые умения	Код провер яемого требов ания	Тип зад ан ия	Ма кс. ба лл	Уро вен ь сло жно сти
1	Равноускоренное прямолинейное движение	2.1.5	Применять при описании физических процессов и явлений величины (перемещение, скорость, ускорение)	2.6	К	1	Б
2	Свободное падение. Ускорение свободного падения. Движение тела, брошенного под углом к горизонту	2.1.6	Применять при описании физических процессов и явлений величины <i>(скорость, ускорение)</i>	2.6	К	1	Б
3	Второй закон Ньютона	2.2.3	Применять при описании физических процессов и явлений величины (ускорение, сила)	2.6	К	1	Б
4	Движение небесных тел и их спутников, первая космическая скорость	2.2.6	Применять при описании физических процессов и явлений величины (ускорение, сила)	2.6	К	1	П

Настоящий текст является объектом авторского права. Свободное и безвозмездное использование любых материалов, входящих в состав данного текста, ограничено использованием в личных целях и допускается исключительно в некоммерческих целях. Нарушение вышеуказанных положений является нарушением авторских прав и влечет наступление гражданской, арминистративной и уголовной ответственности за востветствии с законодательством Российской Федерации. В случае самостоятельного использования материалов тект 2 пОУ ДПО МЦКО и в несёт ответственности за уграту актуальности текста.
© Московский центр качества образования, 2022.

5	Импульс тела и системы тел, изменение импульса, закон сохранения импульса	2.4.3	Решать расчётные задачи с явно заданной физической моделью	2.8	К	1	Б
6	Закон сохранения энергии	2.4.1	Решать расчётные задачи с явно заданной физической моделью	2.8	К	1	П
7	Закон Архимеда, условие плавания тел	2.3.4	Анализировать механические процессы (явления), используя основные положения и законы механики	2.3	К	2	Б
8	Механика (изменение физических величин в процессах)	2.2	Анализировать механические процессы (явления), используя основные положения и законы механики	2.3	К	2	Б
9	Равноускоренное прямолинейное движение. Свободное падение. Ускорение свободного падения. Движение тела, брошенного под углом к горизонту (установление соответствия между графиками и физическими величинами; между физическими величинами и формулами)	2	Анализировать механические процессы (явления), используя основные положения и законы механики	2.3	К	2	Б
10	Связь между давлением и средней кинетической энергией теплового движения молекул, связь абсолютной температуры со средней кинетической энергией теплового движения молекул	3.1.9	Объяснять особенности протекания физических явлений (тепловое движение частиц вещества)	2.7	К	1	Б
11	Уравнение Менделеева – Клапейрона, изопроцессы	3.1.6	Решать расчётные задачи с явно заданной физической моделью	2.8	К	1	П

Настоящий текст является объектом авторского права. Свободное и беввозмездное использование любых материалов, водящих в состав данного текста, ограничено использование инспользование использование достав данного текста, ограничено использование и личных целях и долуксвается использование делях. Нарушение вышеуказанных положений является нарушением авторских прав в всечёт наступение граждикові, административной и уголовной ответственности в соответствине законодательством Российской Федерации. В случае самостоятельного использования материалого текта ГАОУ ДПО МЦКО не несет ответственности в уграту актуальности текста.

© Московский Центр качества образования, 2022.

12	Первый закон термодинамики и его применение к изопроцессам	2.3.9	Анализировать тепловые процессы (явления), используя основные положения молекулярной физики и законы МКТ и термодинамики	2.4	К	1	Б
13	Первый закон термодинамики.	2.3.9	Решать расчётные задачи с явно заданной физической моделью	2.8	К	1	П
14	МКТ, термодинамика (объяснение явлений; интерпретация результатов опытов, представленных в виде таблицы или графиков)	3.1,3	Анализировать тепловые процессы (явления), используя основные положения молекулярной физики и законы МКТ и термодинамики	2.4	К	2	Б
15	Изменение агрегатных состояний вещества: испарение и конденсация, кипение жидкости, плавление и кристаллизация. Уравнение теплового баланса	3.3.1	Решать расчётные задачи с явно заданной физической моделью	2.8	К	1	П
16	Принципы действия тепловых машин, КПД	3.2.1	Применять при описании физических процессов и явлений величины	2.6	К	2	Б
17	Влажность воздуха. Относительная влажность	3.3.3	Применять при описании физических процессов и явлений величины (относительная влажность воздуха)	2.6	К	2	Б
18	Механика (законы сохранения, работа силы. теорема о кинетической энергии материальной точки) (расчётная задача)	2.4.7	Решать расчётные задачи с неявно заданной физической моделью	2.8	P	3	В

Настоящий текст является объектом авторского права. Свободное и безвозмездное использование дюбых материалов, входящих в состав данного текста, ограничено использованием в дичных целях и допускается исключительно в некоммерческих целях. Нарушение выперханных положений является нарушением авторских прав и долего настоям Рессийской Федерации. В случае самостоятельного использования материалов теста ГАОУ ДПО МЦКО не несет ответственности с законодательством Рессийской Федерации. В случае самостоятельного использования материалов теста ГАОУ ДПО МЦКО не несет ответственности за утрату актуальности текста.

© Московский центр качества образования, 2022 на

Приложение 2

Демонстрационный вариант диагностической работы по физике для обучающихся 10-х классов образовательных организаций города Москвы

Ниже приведены справочные данные, которые могут понадобиться при выполнении работы.

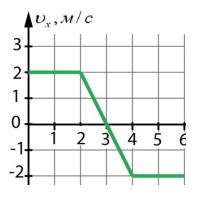
Плотность	
воды	1000 кг/м ³
керосина	800 кг/м ³

Удельная теплоёмкость

4,2·10³ Дж/(кг·К)

льда $2,1\cdot 10^3$ Дж/(кг·К)

Удельная теплота

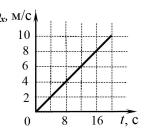

воды

парообразования воды $2,3\cdot10^6$ Дж/кг

Настоящий текст видяется объектом авторкают правы. Свободное в безпознедное использование любых материалов, входящих в состав данного текста, ограничено использованием в личных целях и допускается неключительно в некоммерческих целях. Нарушение вышерхаданных положений видяется нарушением авторских прав в влечёт выступление гражданской, административной и уголовной ответственности в соответствии с законодательством Российской Федерации. В случае самостоительного использования материалов теста ГАОУ ДПО МЦКО не несёт ответственности за уграту актуральности текста. © Московский центтр качества образованиях, 2022. Выполняя задания, запишите ответ в указанном месте. Затем перенесите записанный ответ в бланк тестирования справа от номера задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке по образцу, указанному в бланке. Между символами не ставьте запятые и пробелы.

На графике изображена зависимость проекции v_x скорости тела, движущегося вдоль оси Ox, от времени.

Какой путь прошло тело к моменту времени t = 4 с?


Ответ:	M.

Тело свободно падает с нулевой начальной скоростью. Сопротивление воздуха пренебрежимо мало́. На сколько увеличится скорость тела за шестую секунду от начала падения? Ускорение свободного падения принять равным 10 м/с².

Ответ:	_ M/	c.
--------	------	----

Скорость автомобиля массой 1000 кг, υ_x , м/c движущегося вдоль оси Ox, изменяется со временем в соответствии с графиком (см. 8 рисунок). Систему отсчёта считать инерциальной.

Определите равнодействующую всех сил, действующих на автомобиль.

4 Рассмотрите таблицу, содержащую характеристики планет Солнечной системы.

Название	Среднее	Диаметр	Наклон	Первая
планеты	расстояние от	в районе	оси	космическая
	Солнца (в а.е.)	экватора, км	вращения	скорость, км/с
Меркурий	0,39	4879	0,6′	3,01
Венера	0,72	12 104	177° 22′	7,33
Земля	1,00	12 756	23° 27′	7,91
Mapc	1,52	6794	25° 11′	3,55
Юпитер	5,20	142 984	3° 08′	42,1
Сатурн	9,58	120 536	26° 44′	25,1
Уран	19,19	51 118	97° 46′	15,1
Нептун	30,02	49 528	28° 19′	16,8

Используя данные таблицы, определите ускорение свободного падения на поверхности Сатурна. Ответ округлите до десятых.

5	Пуля летит горизонтально, попадает в деревянный брусок, неподвижно лежащий на гладкой горизонтальной поверхности, и застревает в нём. Скорость бруска после этого становится равной 5 м/с. Масса бруска в 39 раз
	больше массы пули. Определите скорость пули до попадания в брусок. Ответ: м/с.

 M/c^2

6 Скорость теннисного мяча непосредственно перед ударом о стену была втрое больше его скорости сразу после удара. При ударе выделилось количество теплоты, равное 32 Дж. Найдите кинетическую энергию мяча перед ударом.

Ответ:	ЖД
O I De I .	——————————————————————————————————————

Ответ:

7

На поверхности воды плавает деревянный брусок, частично погружённый в жидкость. Как изменятся сила Архимеда, действующая на брусок, и вес вытесненной им жидкости, если он будет плавать на поверхности керосина? Установите соответствие между физической величиной и её возможным изменением: для каждой позиции первого столбца подберите позицию из второго столбца, обозначенную цифрой. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА

ИЗМЕНЕНИЕ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ

А) сила Архимеда

Б) вес вытесненной жидкости

- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:	A	Б
Ответ:		

В бланк запишите ТОЛЬКО ЦИФРЫ в том порядке, в котором они идут в таблице, не разделяя их запятыми.

8

С вершины наклонной плоскости из состояния покоя скользит с ускорением лёгкая коробочка, в которой находится груз массой m (см. рисунок). Как изменятся модуль ускорения движения и модуль работы силы тяжести, если с той же наклонной плоскости будет скользить та же коробочка с грузом массой 3m? Установите соответствие между физическими величинами и их возможным изменением: для каждой позиции первого столбца подберите позицию из второго столбца, обозначенную цифрой. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА

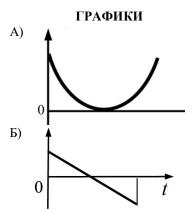
ИЗМЕНЕНИЕ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ

- А) модуль ускорения
- Б) модуль работы силы тяжести
- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: А Б

В бланк запишите ТОЛЬКО ЦИФРЫ в том порядке, в котором они идут в таблице, не разделяя их запятыми.


Настоящий текст является объектом авторского права. Свободное и безвозмездное использование любых материалов, входящих в состав данного текста, ограничено использованием в личных целях и долужается исискочненное в нескоммерческих и. Крушение вышеужавники положений вклюстем нарушением авторских прав и вастей пакстивности ражданской, административной и уголовной ответственности в соответственности за уграту актуальности текста.

В случае самостоятельного использования материалов теста ГАОУ ДПО МЦКО не несёт ответственности за уграту актуальности текста.

© Московский центра укачества образования, 2022.

Камень брошен вертикально вверх с поверхности земли. Считая сопротивление воздуха пренебрежительно малым, установите соответствие между графиками и физическими величинами, зависимость которых от времени эти графики могут представлять: для каждой позиции первого столбца подберите позицию из второго столбца, обозначенную цифрой.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) проекция скорости камня v_v
- 2) кинетическая энергия камня
- 3) проекция ускорения камня a_v
- 4) энергия взаимодействия камня с Землёй

Запишите в таблицу выбранные цифры под соответствующими буквами.

Отрат	A	Б
Ответ:		

В бланк запишите ТОЛЬКО ЦИФРЫ в том порядке, в котором они идут в таблице, не разделяя их запятыми.

При уменьшении объёма неизменной массы идеального газа в 2 раза средняя кинетическая энергия теплового движения его молекул увеличилась в 6 раз. Во сколько раз при этом увеличилось давление газа?

Ответ: в______ раз(а).

Идеальный газ в жёстком герметично закрытом баллоне нагрели так, что его температура изменилась на $\Delta T = 300$ K, а давление — в 1,5 раза. Найдите начальную температуру газа.

Ответ: К

12	На VT -диаграмме показан процесс изменения состояния постоянной массы идеального одноатомного газа, где V – объём газа, T – его абсолютная температура. Работа, совершённая над газом в этом процессе, равна $60\ \mathrm{кДж}$. Какое количество теплоты отдал газ в окружающую среду?
	Ответ: кДж. $0 T_0 T$
13	В сосуде находится 1 моль одноатомного идеального газа. Какое количество теплоты получил газ в процессе, изображённом на pV -диаграмме (см. рисунок)? Ответ: кДж. $p, 10^5 \Pi a$ $0,4$ $0,3$ $0,2$ $0,1$ $0,1$ $0,2$ $0,1$
14	На рисунке в координатах $V-T$, где $V-$ объём газа, а $T-$ его абсолютная температура, показан график циклического процесса, проведённого с одноатомным идеальным газом. Количество вещества газа постоянно. Из приведённого ниже списка выберите все правильные утверждения, характеризующие процессы, отображённые на графике. Обведите их номера.
	В процессе
	 AB давление газа увеличивается. BC плотность газа увеличивается. BC газ совершает положительную работу. CD от газа отводят положительное количество теплоты. DA изменение внутренней энергии газа равно нулю.
	Обведённые цифры запишите в ответ.
	Ответ: Запишите ответ в бланк без дополнительных знаков.

В сосуд с водой опущена трубка. По трубке через воду пропускают пар при температуре 100 °С. Вначале масса воды увеличивается, но в некоторый момент масса воды перестаёт увеличиваться, хотя пар по-прежнему пропускают. Первоначальная масса воды 230 г, а её первоначальная температура 0 °С. На сколько увеличилась масса воды? Тепловыми потерями пренебречь.

Ответ:	КГ.

15

Температуру холодильника идеального теплового двигателя, работающего по циклу Карно, увеличили, оставив температуру нагревателя прежней. Количество теплоты, полученное рабочим телом - газом от нагревателя за цикл, не изменилось. Как изменились при этом КПД теплового двигателя и количество теплоты, отданное газом холодильнику?

Установите соответствие между физическими величинами и их возможными изменениями: для каждой позиции первого столбца подберите позицию из второго столбца, обозначенную цифрой. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

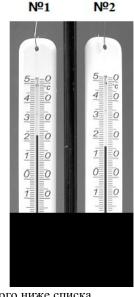
- А) КПД теплового двигателя
- Б) количество теплоты, отданное газом холодильнику

ИЗМЕНЕНИЕ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ

- 1) увеличился/увеличилось
- 2) уменьшился/уменьшилось
- 3) не изменился/не изменилось

Запишите в таблицу выбранные цифры под соответствующими буквами.

_	\mathbf{A}	Б	
Этвет:			


В бланк запишите ТОЛЬКО ЦИФРЫ в том порядке, в котором они идут в таблице, не разделяя их запятыми.

17

На фотографии представлены два термометра, используемые для определения относительной влажности воздуха с помощью психрометрической таблицы, в которой влажность указана в процентах. Нижняя часть термометров на фотографии закрыта ширмой.

Психрометрическая таблица

t cyx.	Разность показаний сухого								
терм		И	вла	жног	о тер	MOM	етро	В	
°C	0	1	2	3	4	5	6	7	8
15	100	90	80	71	61	52	44	36	27
16	100	90	81	71	62	54	45	37	30
17	100	90	81	72	64	55	47	39	32
18	100	91	82	73	64	56	48	41	34
19	100	91	82	74	65	58	50	43	35
20	100	91	83	74	66	59	51	44	37
21	100	91	83	75	67	60	52	46	39
22	100	92	83	76	68	61	54	47	40
23	100	92	84	76	69	61	55	48	42
24	100	92	84	77	69	62	56	49	43
25	100	92	84	77	70	63	57	50	44

18

Укажите **все** правильные утверждения из приведённого ниже списка. Обведите их номера.

- 1) Термометр № 1 сухой, а термометр № 2 влажный.
- 2) При относительной влажности, соответствующей проведённому эксперименту, показания влажного термометра меньше показаний сухого термометра, т. к. процесс испарения идёт с выделением энергии.
- 3) Относительная влажность воздуха по показаниям психрометра равна 37%.
- 4) Показания сухого термометра при любой относительной влажности воздуха больше показаний влажного.
- 5) Чем выше относительная влажность, тем меньше разность в показаниях сухого и влажного термометров.

Обведё	нные цифр	ы запишите	в ответ.		
Ответ:					
Zanını	ıma omaam	0 6701111 602	dononum	271.111.13	211/11/10/

Не забудьте перенести все ответы в бланк тестирования!

Настоящий теся является объедтом авторского правь. Свободное и безвозмедное вспользование любых материалов, кодящих в состав данного текста, ограничено использованием в личных целях и допускается исключительно в некомьерческих целях. Нарушение вышеуказывных положений является нарушением авторского прав и выечёт наступением режданской, административной и уголовной опестепенности в соответствии с законодательством Российской Федерации. В случае самостоятельного использования материалов теста ГАОУ ДПО МПКО в несей точественности з уграту актуальности текста.
© Московский центру качества образования, 2023.

При выполнении задания 18 используйте обратную сторону бланка тестирования. Запишите сначала номер задания, а затем ответ на него. Полное правильное решение должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

Брусок массой m скользит по горизонтальной поверхности стола и нагоняет брусок массой 4m, скользящий по столу в том же направлении. В результате неупругого соударения бруски слипаются. Их скорости перед ударом: $\upsilon_0=4$ м/с и $\frac{\upsilon_0}{2}$. Определите коэффициент трения скольжения между брусками и столом, если слипшиеся бруски к моменту, когда их скорость станет равна $\frac{2}{5}\upsilon_0$, переместятся на расстояние от места соударения S=1 м. Влиянием силы трения со стороны стола на столкновение брусков пренебречь.

Настоящий текст является объектом авторского права. Свобацию и белкомедиков использование любых материалов, входящих в состав данного текста, ограничено использованием в личных целях и допускателя исключительно в некоммерческих целях. Нарушение вышеукальных положений является нарушением авторских прав в въечёт наступление граждинской, административной и уголовной ответственности в соответствии с законодательством Российской Федерации. В случае самостоятельного использования материалога текта ГАОУ ДПО МЦКО не нееёт ответственности в уграту актуальности текста.

© Московоский Центр качества образованиях, 2022.

Ответы для заданий с кратким ответом

№	Ответ	Макс.	
задания	Olbei	балл	
1	6	1	
2	10	1	
3	500	1	
4	10,5	1	
5	200	1	
6	36	1	
7	33	2	
8	31	2	
9	21	2	
10	12	1	
11	600	1	
12	60	1	
13	15	1	
14	45 или 54	2	
15	0,042	1	
16	21	2	
17	15 или 51	2	

Критерии оценивания задания 18

Возможное решение

Пусть u_0 — начальная скорость брусков после соударения. Согласно закону сохранения импульса $m\upsilon_0 + 4m\cdot\frac{1}{2}\upsilon_0 = (4m+m)u_0 \Rightarrow$

 $\Rightarrow m\nu_0 + 2m\nu_0 = 5mu_0 \Rightarrow u_0 = \frac{3}{5}\nu_0$. По условию после перемещения на расстояние S

конечная скорость движения брусков $u = \frac{2}{5}\nu_0$.

Изменение кинетической энергии слипшихся брусков равно работе силы трения: $\Delta E_{\rm K} = A_{\rm rp}, \ A_{\rm rp} = -F_{\rm rp}S, \ F_{\rm rp} = \mu(4m+m)g$.

Отсюда:
$$\frac{(4m+m)u_0^2}{2} = \frac{(4m+m)u^2}{2} + \mu(4m+m)gS \Rightarrow$$

$$\Rightarrow \frac{5m\left(\frac{3}{5}\upsilon_0\right)^2}{2} - \frac{5m\left(\frac{2}{5}\upsilon_0\right)^2}{2} = 5m\mu gS \Rightarrow \frac{9}{25} \cdot \upsilon_0^2 - \frac{4}{25} \cdot \upsilon_0^2 = 2\mu gS \Rightarrow$$

$$\Rightarrow \mu = \frac{1}{10} \cdot \frac{\upsilon_0^2}{gS} = \frac{4^2}{10 \cdot 1 \cdot 10} = 0.16.$$

Ответ: $\mu = 0.16$

Критерии оценивания выполнения задания Баллы

Приведено полное решение, включающее следующие элементы:

I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае: закон сохранения импульса, теорема о кинетической энергии, выражение для работы силы трения);

II) описаны все вновь вводимые в решение буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, и обозначений, используемых в условии задачи);

III) проведены необходимые математические преобразования и расчёты (в формулу подставлены цифры), приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями при подстановке чисел в формулы);

IV) представлен правильный ответ с учётом верно указанных единиц измерения искомой физической величины.

Правильно записаны все необходимые положения теории, физические	2
законы, закономерности, и проведены необходимые преобразования. Но	
имеются следующие недостатки.	
Записи, соответствующие пункту II, представлены не в полном объёме или	
отсутствуют.	
ИЛИ	
В решении имеются лишние записи, не входящие в решение, которые не	
отделены от решения и не зачёркнуты.	
ИЛИ	
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) преобразования/вычисления не доведены до	
конца.	
ИЛИ	
Отсутствует пункт IV, или в нём допущена ошибка.	
Представлены записи, соответствующие одному из следующих случаев.	1
Представлены только положения и формулы, выражающие физические	
законы, применение которых необходимо для решения задачи, без каких-	
либо преобразований с их использованием, направленных на решение	
задачи, и ответа.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая для	
решения задачи (или утверждение, лежащее в основе решения), но	
присутствуют логически верные преобразования с имеющимися	
формулами, направленные на решение задачи.	
или	
В ОДНОЙ из исходных формул, необходимых для решения задачи (или в	
утверждении, лежащем в основе решения), допущена ошибка, но	
присутствуют логически верные преобразования с имеющимися	
формулами, направленные на решение задачи.	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1, 2, 3 балла.	

Максимальный балл