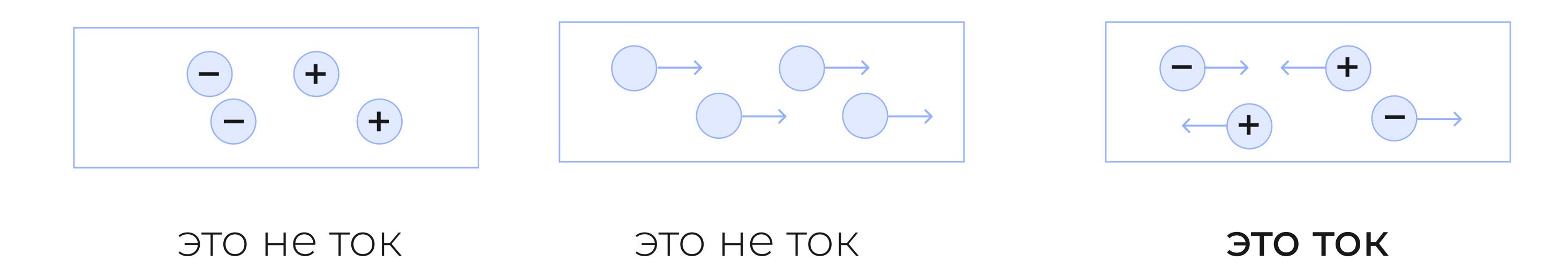
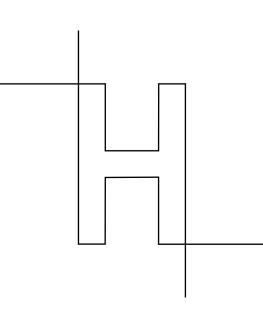


РИО — это реакции ионного **обмена** между **электролитами**, протекающие **в растворе**

Реакции обмена — реакции между двумя сложными веществами, которые обмениваются составными частями


$$AB + CD = AD + CB$$
 $KBr + AgNO_3 = AgBr + KNO_3$


Раствор — это однородная система, включающая воду (растворитель) и растворенное вещество

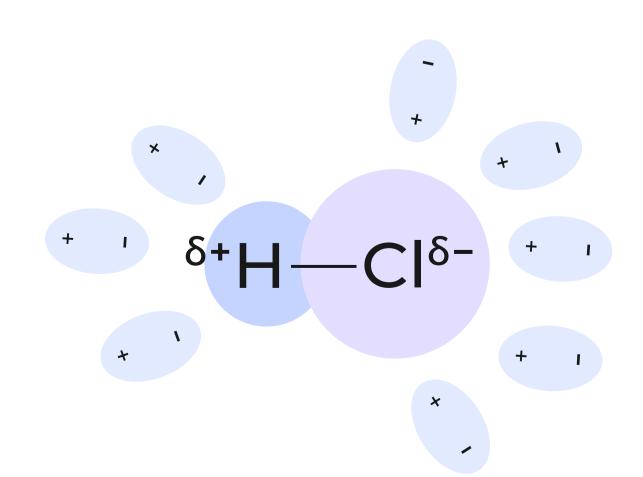
Понятие об электролитах. Электролитическая диссоциация

Электролиты — это вещества, растворы (и расплавы) которых проводят электрический ток.

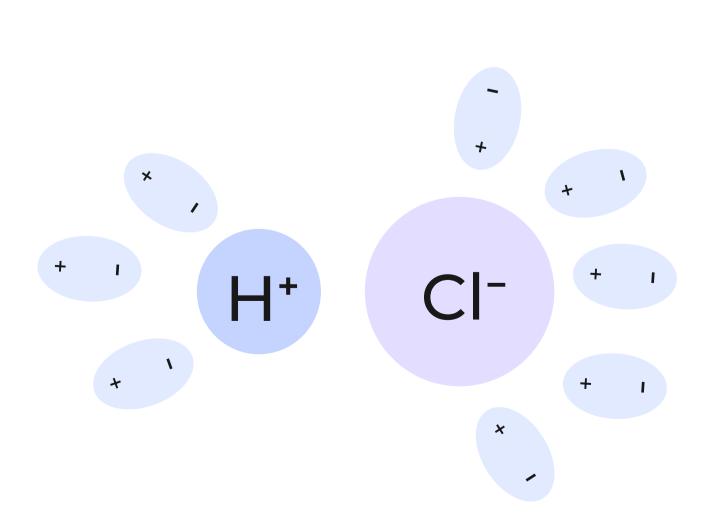
Электрический ток — это направленное движение заряженных частиц

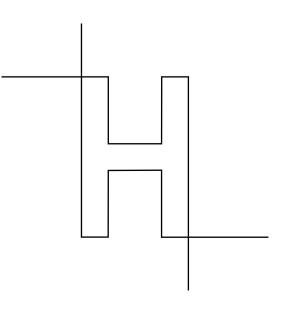
Условия существования электрического тока:

- Наличие электрического поля
- Наличие свободных заряженных частиц

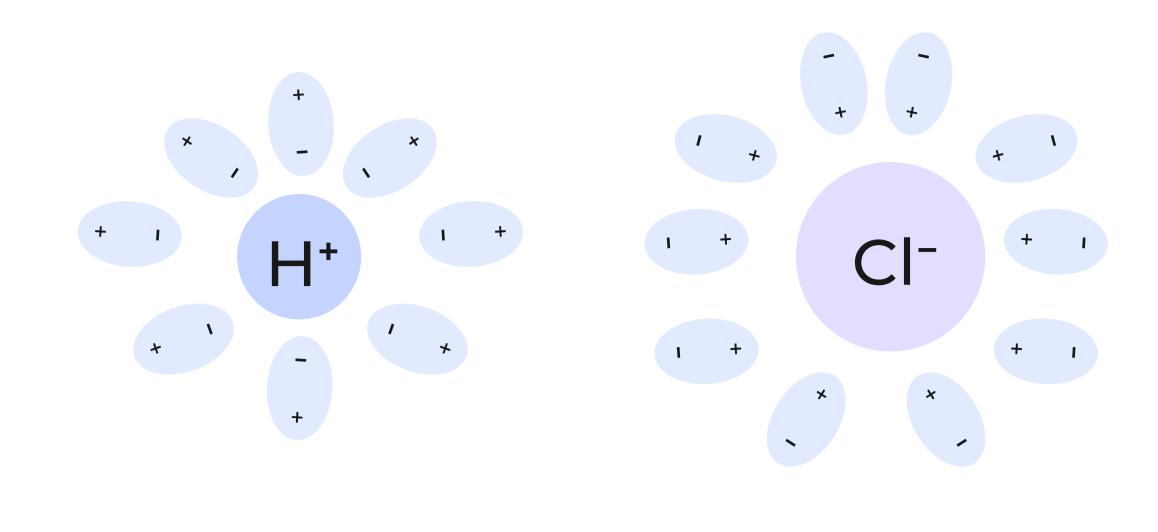


Электролитическая диссоциация — распад электролита в растворе на положительно и отрицательно заряженные ионы — катионы и анионы.


Hапример, $HCI = H^+ + CI^-$


Этапы:

Гидратация. Происходит окружение молекулы хлороводорода молекулами воды.



2 Ионизация. Связь между водородом и хлором становится менее прочной, разрушается, образуются ионы.

3 Диссоциация. Образовавшиеся ионы отдаляются друг от друга.

 $HCI = H^+ + CI^-$

Классификация электролитов

СИЛЬНЫЕ

Диссоциируют нацело и необратимо

К ним относятся:

- щелочи
- сильные кислоты
- соли

Пример:

 $NaOH \longrightarrow Na^+ + OH^-$

NaOH	Na ⁺ OH ⁻
$\stackrel{\textstyle \longrightarrow}{}$	
NaOH	$Na^{+}OH^{-}$

СЛАБЫЕ

Диссоциируют неполностью и обратимо

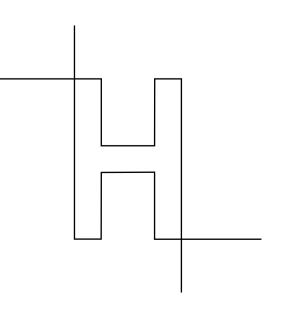
К ним относятся:

- слабые основания
- амфотерные гидроксиды
- слабые кислоты
- некоторые ионы

Пример:

 $HNO_2 \longrightarrow H^+ + NO_2^-$

 HNO_2 H^+NO_2


 100_2 100_2

Характеристика отдельных групп электролитов

Вода

Слабый электролит, обратимо диссоциирует с образованием катионов водорода и гидроксид-анионов:

$$H_2O \Longrightarrow H^+ + OH^-$$

Основания

Основания диссоциируют с образованием гидроксид-анионов:

$$Me(OH)_x \longrightarrow Me^{x+} + xOH^-$$

СИЛЬНЫЕ

Диссоциируют нацело и необратимо

Щелочи — гидроксиды щелочных и щелочноземельных металлов

Пример:

 $NaOH \longrightarrow Na^+ + OH^-$

		T	TI.
	1	H 1,008	
		Водород	
_	2	3	P
П	2	Li 6,94 Литий	Ве 9,01 Бериллий
		11	12
e	3	Na 22,99	Mg 24,31
	-	Натрий 19	Магний 20
p	4	K 39,10	Ca 40,08
		Калий	Кальций
М		29	30
		63,55 Cu	65,39 Zn
0	-	Медь 37	Цинк 38
	5	Rb 85,47	Sr 87,62
-	_	Рубидий	Стронций
д		47	48
		107,87 Ag	112,41 Cd
ы		Серебро	Кадмий
	6	55 Ce 400 04	56 Bausson
		CS 132,91 Цезий	Ва 137,33 Барий
		79	80
		196,97 Au	200,59 Hg
		Золото	Ртуть
	_	87	88
	7	Fr [223]	Ra 226
		Франций	Радий 112
		[280] Rg Рентгений	[285] Сп Коперниций

СЛАБЫЕ

Диссоциируют неполностью и обратимо

Слабые основания (все остальные + аммиак)

Пример: $NH_4OH \rightleftharpoons NH_4^+ + OH^-$

Многокислотные основания

диссоциируют ступенчато

 $CuOH^+ \rightleftharpoons Cu^{2+} + OH^-$

Кислоты

Кислоты диссоциируют с образованием катионов водорода:

$$H^{x}AC \longrightarrow XH_{+} + AC_{-}$$

СИЛЬНЫЕ

Диссоциируют нацело и необратимо

- HCl, HBr, HI
- кислородсодержащие кислоты,
 у которых О Н = 2 и больше

Пример:

$$HNO_3 \longrightarrow H^+ + NO_3^-$$

СЛАБЫЕ

Диссоциируют неполностью и обратимо

- все остальные бескислородные
- кислородсодержащие кислоты,
 у которых О Н = 0 или 1

Пример: $HNO_2 \rightarrow H^+ + NO_2^-$

Многоосновные кислоты

диссоциируют ступенчато

Пример: $H_2S \rightleftharpoons H^+ + HS^-$

 $HS^- \longleftrightarrow H^+ + S^{2-}$

Амфотерные гидроксиды

Слабые электролиты, в растворе проявляют двойственные свойства:

$$2\mathbf{H}^{+} + ZnO_{2}^{2-} \rightleftharpoons Zn(OH)_{2} \rightleftharpoons Zn^{2+} + \mathbf{OH}^{-}$$

Соли

Это сильные электролиты, которые диссоциируют с образованием катионов металлов (или катиона аммония) и анионов кислотного остатка:

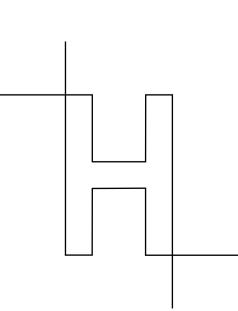
$$MeAc \longrightarrow Me^+ + Ac^-$$

Например:
$$CaCl_2$$
 — Ca^{2+} + $2Cl^{-}$

Реакции ионного обмена

Уравнения реакций:

1. Молекулярное уравнение реакции


$$CuCl_2 + 2NaOH = 2NaCl + Cu(OH)_2$$

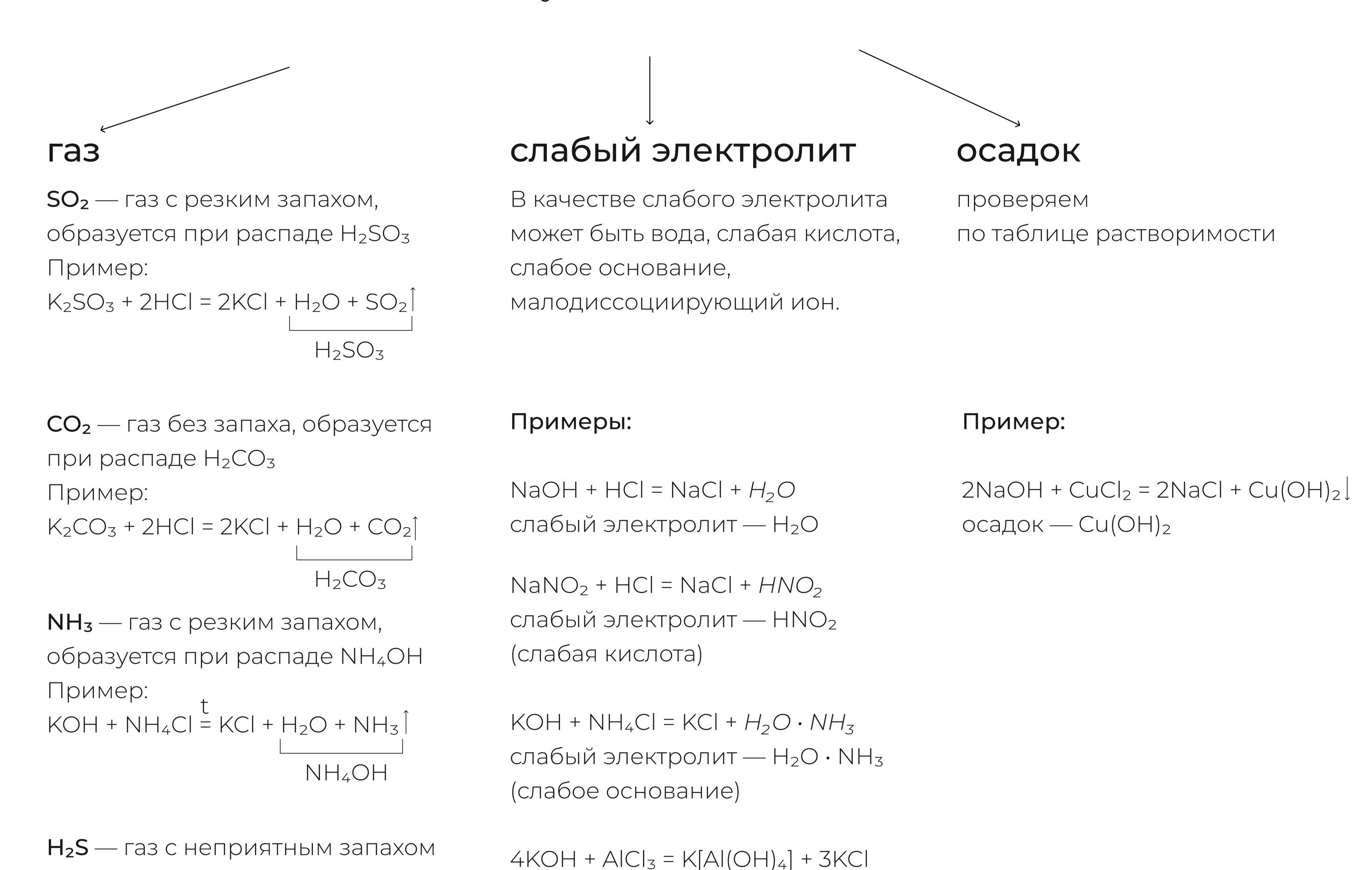
2. Полное ионное (на ионы расписываются сильные растворимые электролиты)

$$Cu^{2+} + 2Cl^{-} + 2Na^{+} + 2OH^{-} = 2Na^{+} + 2Cl^{-} + Cu(OH)_{2}$$

 $CuCl_{2} = Cu^{2+} + 2Cl^{-}$ 2NaOH = 2Na⁺ + 2OH⁻ 2NaCl = 2Na⁺ + 2Cl⁻

3. Сокращенное ионное (сокращаются повторяющиеся справа и слева частицы)

$$Cu^{2+} + 2OH^{-} = Cu(OH)_{2}$$



Правила протекания реакций ионного обмена:

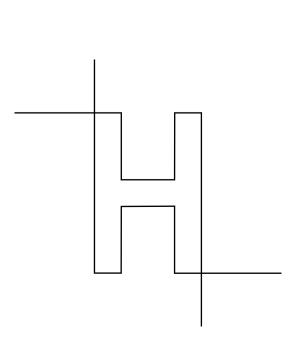
Образование в продуктах осадка/газа/слабого электролита

Реакция ионного обмена протекает, если в продуктах происходит связывание реагентов: образуется осадок/газ/слабый электролит

Это главное и обязательное условие для всех РИО!

слабый электролит — [Al(OH)₄]-

(малодиссоциирующий ион)


Для протекания реакций «соль + основание/амф.гидроксид»,
 «соль + соль» также необходимым условием является
 растворимость обоих реагентов

$$H$$
 $AI(OH)_3 + NaCI$

Пример:

 $K_2S + 2HCl = 2KCl + H_2S$

$$P$$
 P $CuCl_2 + 2NaOH = Cu(OH)_2 + 2NaCl$

Условия для протекания реакций «соль + кислота»:

- 1. Кислота растворима в воде (H₂SiO₃ не реагирует)
- 2. Соль-реагент растворима в кислотах
- **3.** Продуктом-осадком может быть H_2SiO_3 или соль, нерастворимая в кислотах

! Соли, которые не растворяются в кислотах:

- a) Ag₂S, CuS, HgS, PbS
- б) нерастворимые соли сильных кислот

Примеры:

$$H_2SO_4 + CaCO_3 = CaSO_4 + CO_2 + H_2O_1$$
 H_2CO_3

$$AgCl + H_2SO_4 \longrightarrow$$
 реакция не идет, т.к. $AgCl$ нерастворим в кислотах

$$NaCl + HNO_3 \longrightarrow NaNO_3 + HCl$$
 реакция не идет, т.к. нет осадка/газа/слабого электролита в продуктах

