Инженер-испытатель космических аппаратов

Благодаря аппаратам, отправленным человеком в космос, мы получаем не только величественные фотографии Вселенной, но и можем пользоваться этими технологиями для нашего комфорта и удобства. Это и навигация, и спутниковое телевидение, и точный прогноз погоды.

Инженер-испытатель космических аппаратов отвечает за то, чтобы провести проверку сложных устройств перед их доставкой на околоземную орбиту. Он делает тесты разрабатываемых аппаратов и даёт рекомендации по доработке проблемных узлов космической техники

Задачи учителя

Разработка программ и методик испытаний бортовой аппаратуры

Подготовка и настройка космических аппаратов перед тестированием

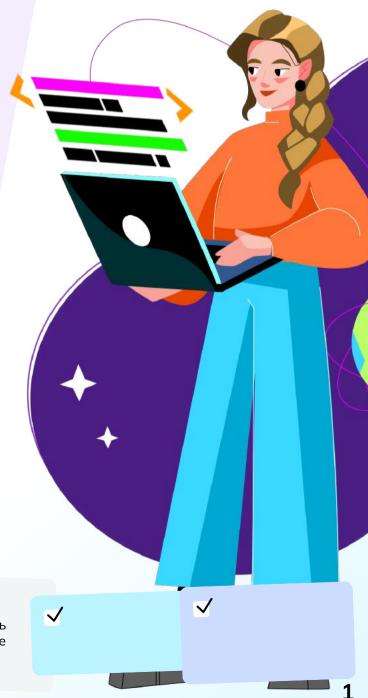


Проведение и анализ комплексных испытаний разрабатываемых космических аппаратов

Разработка рекомендаций по совершенствованию проверяемой техники

Вам будет интересна эта профессия, если вы...

интересуетесь робототехникой и любите астрономию


мечтаете работать в космической сфере не покидая родную планету

интересуетесь математикой и физикой больше, чем русским и литературой

любите работать руками и можете найти причину любой поломки

Задание

Сегодня вы — ведущий инженер-испытатель систем космических аппаратов. Без вас в космос ничего и никто просто не попадёт!

Основная задача: проверить системы и аппаратуру космического аппарата, чтобы спутник вышел на орбиту.

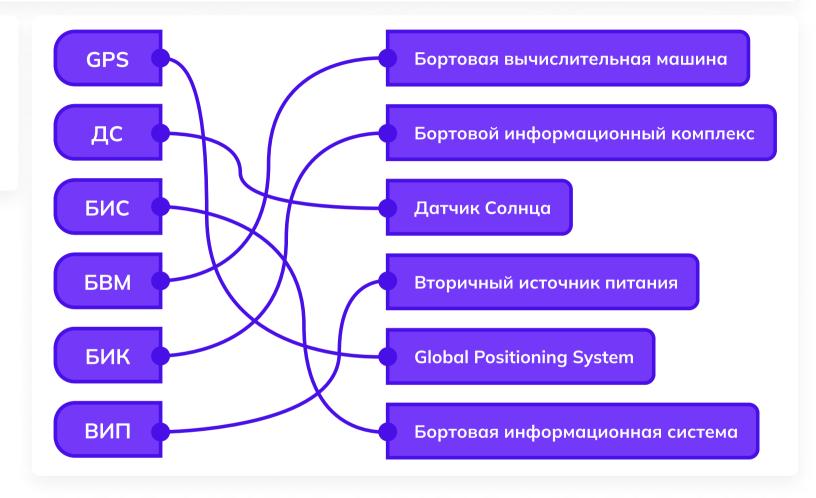
Испытания космических аппаратов проходят в несколько этапов. Сначала подготовительный: определение задач спутника, составление технической документации, заказ и приёмка оборудования.

Затем идёт этап наземных испытаний. Инженер проверяет исправность систем и искусственно создаёт поломки, чтобы избежать их при запуске.

Третий этап: лётные испытания. Когда аппарат запускают в космос, инженерыиспытатели трудятся в центре управления полётами (ЦУП), наблюдают за всеми параметрами и решают нештатные ситуации.

Некоторые из этих задач сейчас предстоит решить и вам. Удачи!

Этапы


- Разобраться в системах космического аппарата
- 2 Придумать решение для каждой поломки во время наземных испытаний
- 3 Проверить работу алгоритма в системе бортового компьютера
- 4 Составить программу команд для запуска спутника на орбиту

Часть 1

Подготовительная работа

Каждому инженеру-испытателю необходимо знать не только названия систем, но и различные аббревиатуры для быстрого поиска справочной информации и «общения» с бортовым компьютером.

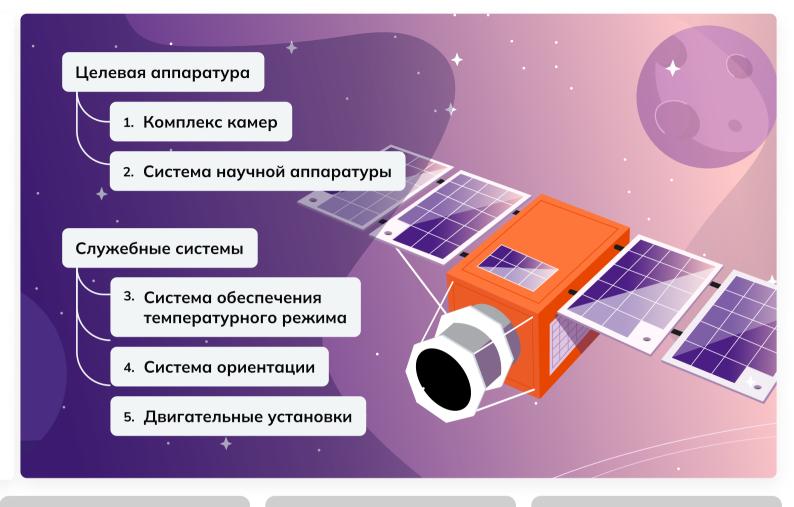
Определите, как расшифровать каждое сокращение.

Часть 1

Подготовительная работа

Все системы космического аппарата связаны между собой. Испытатель должен знать, за что отвечает каждая из них.

Выберите систему, которая соответствует описанию:


СИСТЕМА 1/5

Устройства для регистрации изображений поверхности земли

Комплекс камер

Система связи

Система управления

CUCTEMA 2/5

Обеспечивает сбор и обработку информации в процессе зондирования земной поверхности

СИСТЕМА 3/5

Поддерживает баланс тепловой энергии, обеспечивает нужную температуру различных модулей и узлов

СИСТЕМА 4/5

Включает устройства определения текущей ориентации космического аппарата: датчики Солнца и Земли, звезд и тд.

CUCTEMA 5/5

Позволяет менять скорость и направление движения спутников

Система научной аппаратуры

Система жизнеобеспечения

Система связи

Комплекс камер

Антенны

Система обеспечения температурного режима

Система научной аппаратуры

Система камер

Система ориентации

Система научной аппаратуры

Антенны

Двигательные установки

Порядок испытаний

Инженериспытатель сопровождает космический аппарат от задумки и технических требований до запуска в космос. Важен каждый шаг!

Распределите действия по этапам.

Подготовительный этап

- 1. Определяем модули для будущего спутника
- 2. Оформляем заказ на производство
- 3. Пишем техническое задание

Испытания на Земле

- 1. Десятки раз проверяем все системы
- 2. Устраняем все выявленные ошибки
- 3. Создаём алгоритмы на случай отказа систем

Запуск и лётные испытания

- 1. Запускаем аппарат в космос
- 2. Круглосуточно наблюдаем за спутником
- 3. Решаем проблемы во время полёта

Наземные испытания


```
// Бортовой компьютер тоже надо запрограммировать! Все алгоритмы.
которые вы придумали для нештатных ситуаций, должны превратиться в
набор команд для спутника.
Режим работы: проверка давления в гермоотсеке (ГО)
Лавление внутри ГО в начале эксплуатации КА около 1.2 атм.
Допустимое отклонение давления - в диапазоне от 0.9 до 1.3 атм.
/* Задача: проверить давление
function
                                                 (pressure) {
                checkAcceleration
                                   checkTemperature
checkPressure
/* Задача: проверить температуру холодного контура */
                             ?
                                                  (temperature) {
 function
               checkTemperatureCool
                                      checkTemperatureHeat
checkVelocity
/* Задача: проверить температуру горячего контура */
                                                  (temperature) {
                             ?
 function
checkSignal
             checkTemperatureCool
                                     checkTemperatureHeat
```

```
// const criticalPressure = 1.3: // Критически высокое давление
if (pressure > criticalPressure) {
console.log("Внимание! Давление на борту космического корабля
близко к критическому уровню!"): // Информация на консоли, если
давление близко к критическому
} else {
console.log("Давление на борту космического корабля в норме.");}}
// Информация на консоли, если давление в пределах нормы
Pressure = 1.1: Давление на борту космического корабля в пределах
нормы.
const criticalTemperatureCool = 5; // Критическая температура
if (temperature > criticalTemperatureCool) {
console.log("Внимание! Температура холодного контура гермоотсека
превысила критический уровень!"); // Информация на консоли, если
температура превысила критическое значение
} else {
console.log("Температура холодного контура в норме.")} //
Информация на консоли, если температура в пределах нормы
Temperature = 1: Температура холодного контура в норме.
} else {
console.log("Температура холодного контура в норме.")} //
Информация на консоли, если температура в пределах нормы
Temperature = 1; Температура холодного контура в норме.
const criticalTemperature = 18; // Критическая температура
if (temperature < criticalTemperature) {</pre>
console.log("Внимание! Температура горячего контура гермоотсека
ниже критического уровня!"); // Информация на консоли, если
температура ниже критического значения
console.log("Температура горячего контура в норме.")} // Информация
на консоли, если температура в пределах нормы
Temperature = 16°C; Внимание! Температура горячего контура
гермоотсека ниже критического уровня!
Надо поднять температуру горячего контура. Что нужно сделать?
Включить охладитель
Запустить резервный комплект нагревателей
```

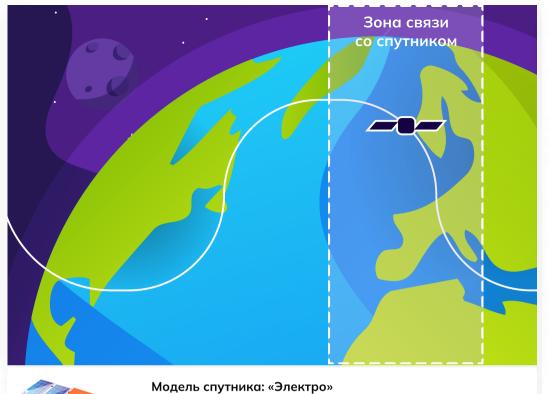
Часть 3

Лётные испытания в ЦУП

1 ВИТОК ВОКРУГ ЗЕМЛИ

Задача 1.1

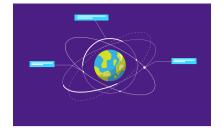
Успокоить интенсивное вращение


Подберите программу под задачу:

Поиск Солнца

Поиск Земли

Запустить обратные двигатели


Ориентация по карте звёздного неба

Бортовой радиолокационный комплекс РЛК 42 Сканер многозональный (МСУ)

Программа работ

- Остановка интенсивного вращения
- 2 Поиск Солнца
- 3 Поиск Земли
- 4 Поиск положения по звёздам
- 5 Навигация по ГЛОНАСС и GPS
- 6 Стабилизация температуры
- 7 Целевая съёмка

1 ВИТОК ВОКРУГ ЗЕМЛИ

Задача 1.2

Найти Солнце

Подберите программу под задачу:

Поиск Солнца

Поиск Земли

Ориентация по карте звёздного неба

1 ВИТОК ВОКРУГ ЗЕМЛИ

Задача 2.1

Найти Землю

Подберите программу под задачу:

Ориентация по карте звёздного неба

Поиск Земли

1 ВИТОК ВОКРУГ ЗЕМЛИ

Задача 2.2

Включить режим ориентации

Подберите программу под задачу:

Ориентация по карте звёздного

1 ВИТОК ВОКРУГ ЗЕМЛИ

Задача 3.1

Включить режим навигации

Подберите программу под задачу:

Сделать контрольный снимок

Зафиксировать положение по ГЛОНАСС и GPS

Понизить температуру в отсеке с фотоаппаратурой

1 ВИТОК ВОКРУГ ЗЕМЛИ

Задача 3.2

Охладить фотокамеру

Подберите программу под задачу:

Сделать контрольный снимок

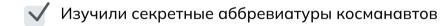
Понизить температуру в отсеке с фотоаппаратурой 1 ВИТОК ВОКРУГ ЗЕМЛИ

Задача 4.1

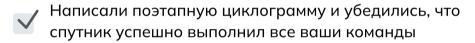
Сделать снимок земли

Подберите программу под задачу:

Переключить на резервное устройство терморегуляции


Активировать режим съёмки

Повторить соединение со спутником ГЛОНАСС и GPS


Поздравялем, миссия выполнена!

Вы отлично справились с испытанием космического аппарата и даже сохранили его после аварии в открытом космосе.

Сегодня вы:

Мне понравилось! Что дальше? Советы от эксперта

- Сегодня вы уже со школы можете выбрать вектор развития— в космос! А ведь каких-то 60 лет назад это было только в мечтой. Мечта становится реальностью! Дерзайте!
- Почитайте в свободное время про бразильскую магнитную аномалию. Она иногда подкидывает нам, специалистам космонавтики, разные «приколы».
- В моей профессии очень важна структурность и внимательность. Как архитектор-проектировщик, который рассчитывает нагрузки всего дома, мы учитываем сотни вероятных событий, которые нужно испытать.

Ольга Гранкина

Ведущий инженер-программист, АО Корпорация ВНИИЭМ

Рекомендую изучать точные науки: математику, физику, даже химию. Но и про гуманитарные направления не забывайте: они помогают расширить мировоззрение и стать более глубоким человеком и успешным профессионалом.